Research: Making Myelination

Lee et al. A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat Methods. 2012;9(9):917-22.

Current methods for studying central nervous system myelination necessitate permissive axonal substrates conducive to myelin wrapping by oligodendrocytes. We have developed a neuron-free culture system in which electron-spun nanofibers of varying sizes substitute for axons as a substrate for oligodendrocyte myelination, thereby allowing manipulation of the biophysical elements of axonal-oligodendroglial interactions. To investigate axonal regulation of myelination, this system effectively uncouples the role of molecular (inductive) cues from that of biophysical properties of the axon. We use this method to uncover the causation and sufficiency of fiber diameter in the initiation of concentric wrapping by rat oligodendrocytes. We also show that oligodendrocyte precursor cells display sensitivity to the biophysical properties of fibre diameter and initiate membrane ensheathment before differentiation. The use of nanofibre scaffolds will enable screening for potential therapeutic agents that promote oligodendrocyte differentiation and myelination and will also provide valuable insight into the processes involved in remyelination.


Making myelinating cultures is technically challenging because to have to first make nerves and then get oligodendrocytes to myelinate them. Nerves are cells that do not like to grow and so you end up using feotal cutlures to produce them or use stem cells to grow them. This study shows that you can use fibres to replace nerves and this then allows you to get an assay going to test drugs on ways to test myelination.

Labels: