Biotin Time

This time in a fortnight it will be Biotin day....Why because on friday 24th you may have the closest thing to the clinic with MD1003. There is a plenary session talk at the American Academy of Neurology.....would this happen for a negative trial?......Maybe. There have been questions about what is biotin

Biotin, also known as vitamin H or coenzyme R,is a water-soluble B-vitamin (vitamin B7).It is composed of a ureido (tetrahydroimidizalone) ring fused with a tetrahydrothiophene ring. A valeric acidsubstituent is attached to one of the carbon atoms of the tetrahydrothiophene ring. Biotin is a coenzyme forcarboxylase enzymes, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis.

The only human health condition for which there is strong evidence of biotin's potential benefit as a treatment is biotin deficiency.This week we will hear whether it is useful in MS

Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids. Biotin assists in various metabolic reactions involving the transfer of carbon dioxide. It may also be helpful in maintaining a steady blood sugar level. Biotin is often used as a dietary supplement for strengthening hair and nails, though scientific data supporting this outcome are weak. Nevertheless, biotin is found in many cosmetics and health products for the hair and skin.

Biotin deficiency is rare because, in general, intestinal bacteria produce biotin in excess of the body's daily requirements. For that reason, statutory agencies in many countries, for example the USA and Australia, do not prescribe a recommended daily intake of biotin. (There you go a use for microbiota hurray). However, a number of metabolic disorders exist in which an individual's metabolism of biotin is abnormal, such as deficiency in the holocarboxylase synthetase enzyme which covalently links biotin onto the carboxylase, where the biotin acts as a cofactor.

Biotin is consumed from a wide range of food sources in the diet, but few are particularly rich sources. Foods with a relatively high biotin content include peanuts, Swiss chard and other leafy green vegetables, raw egg yolk (however, the consumption of avidin (which binds to biotin)-containing egg whites with egg yolks minimizes the effectiveness of egg yolk's biotin in one's body), liver, and Saskatoon berries. The dietary biotin intake in Western populations has been estimated to be 35 to 70 μg/d (143–287 nmol/d). Biotin is also available in supplement form and can be found in most pharmacies.

Animal studies have indicated few, if any, effects due to high level doses of biotin and the half lethal dose in rodents is about 5-6g/kg, so a 100mg tablet is about 1mg/kg. In the study it will be three times a day.

Energy is essential to cellular function and we can get this energy by metabolizing carbohydrates, proteins, and fats. The Kreb's Cycle is a critical component for macronutrient metabolism and energy conversion. The complete metabolism for each of them must, at some point, go through the Kreb's Cycle. 

 (Read on or go to ******)

The Kreb's cycle takes place in the mitochondria of the cell. This cycle is a series of chemical intermediates that are transformed to another intermediate by enzymes specific to that step in the cycle. Each step is catalyzed by a specific enzyme. The cycle starts with oxaloacetate and ends with oxaloacetate. The cycle produces 1 ATP, 3 NADH, and 1 FADH2 per turn. If you recall from glycolysis, two pyruvates are produced per molecule of glucose. Pyruvate is converted to acetyl CoA which enters the Kreb's cycle. Therefore, one molecule of glucose eventually creates 2 turns of the krebs cycle.

Kreb's Cycle EnergyThe 2-carbon acetyl portion of acetyl CoA is oxidized to 2 CO2 molecules during the cycle.

Some amino acids can enter at different steps in the Kreb's cycle. During the metabolism of odd chain fatty acids, one three carbon molecule remains at the end. It enters the Kreb's cycle at the Succinyl CoA step. Thus, the Kreb's cycle is very important for energy production from all food supplies.

The first step in the Krebs Cycle is the formation of citrate from the combination of oxaloacetate and Acetyl CoA. The acetyl group from acetyl CoA is added to oxaloacetate forming citrate via the enzymecitrate synthase. The CoA from acetyl CoA leaves as CoASH. Not much else occurs at this step. Citrate inhibits citrate synthase (product inhibition). So does succinyl CoA by competitive inhibition.

Citrate is converted to isocitrate by the action of aconitase. Again, not much occurs here.

Isocitrate DH acts on isocitrate, converting it to α-ketoglutarate, producing an NADH and CO2 (carbon dioxide) in the process. The carbon that forms CO2 comes from the acetyl group that enters the cycle. This is our first yield from the Kreb's cycle. The removal of carbon dioxide is termed oxidative decarboxylation

NADH inhibits isocitrate DH (product inhibition). NADH product inhibition provides control over three steps in the Kreb's cycle. Since there are only 4 controlled steps in Kreb's, NADH is an important control mechanism. This step is also controlled (enhanced) by increased ADP and calcium.

This is a pretty big and important step. The α-ketoglutarate DH complex acts upon α-ketoglutarate ultimately forming Succinyl CoA. This enzyme complex is described in fair detail in the pyruvate to acetyl CoA step. However, it should be noted that the α-ketoglutarate DH complex is just one of a family of enzymes that oxidatively decarboxylate these a-keto acids. There is an oxidative decarboxylation occuring here (the 2nd carbon from the acetyl entering the Kreb's). In other words, CO2 is released. CoASH is needed and NADH is also produced. Some amino acids (BCAA's) and the 3-carbon molecule remaining after beta oxidation of odd chain fatty acids enter the Kreb's Cycle at this step by being acted upon by this enzyme complex.

NADH inhibits this enzyme complex (as described previously). As NADH concentrations increase, the Kreb's cycle slows down.

All of the remaining intermediates in the Kreb's cycle are four carbon molecules.

This step produces NADH and allows other energy sources (such as AA's and fatty acids) to enter here.

The CoASH that went into step 4 comes off here. Succinate thiokinase acts upon succinyl CoA removing the CoASH and forming succinate. The energy from its release fuels the formation of GTP. Some would say that the GTP fuels the conversion of ADP to ATP (that's where we get the ATP discussed in the overview).

Two pairs of electrons from the acetyl group of acetyl CoA remain even though the carbons have been removed as carbon dioxide. The remaining steps in the Kreb's cycle are transferred to NAD+ and FAD and ultimately reforming oxaloacetate.

In this step, succinate DH acts upon succinate forming fumarate and converting FAD to FADH2. The FAD accepts one of the pairs of electrons that remain. Now only one pair of electrons from the original acetyl group remain in fumarate.

Succinate DH resides within the inner mitochondrial membrane. It binds FAD fairly tightly. All of the other enzymes involved in the Kreb's cycle are located in the mitochondrial matrix.

The only thing that happens in this step is that water is added to fumarate. The enzyme fumarase adds a hydroxyl group and a proton (from the water) to fumarate converting it to malate.

This is the final step of the Kreb's cycle. It is the final step because the intermediate that we added acetyl CoA to, oxaloacetate, is reformed. The final pair of electrons from the original acetyl group are donated to NAD+ forming NADH. The enzyme that catalyzes the reaction is malate DH.

NADH inhibits this step.

In case I haven't mentioned it earlier, there are five co-enzymes needed for the Kreb's cycle to function properly. They have been mentioned in the steps but I didn't specifically point them out (as I will do now). They are: NAD+, FAD, thiamine pyrophosphate, lipoate (lipoic acid), and CoA.

As mentioned earlier, other molecules (such as fats and amino acids) can enter the Kreb's cycle at different locations to produce energy. For example, during periods of long-duration, low to moderate-intensity exercise (aerobic), beta-oxidation of odd-chain fatty acids may enter the Kreb's at the alpha-ketoglutarate DH step. However, when these products must be synthesized, these intermediates have to be pulled out of the cycle. Citrate and malate may be pulled out of the cycle for product synthesis. This would result in a deficiency of the 4-carbon intermediates. Fortunately, there are reactions that re-supply these intermediates. They are called anaplerotic reactions. An example of one of these reactions is the conversion of pyruvate and carbon dioxide to form oxaloacetate. 
The enzyme that catalyzes this reaction is pyruvate carboxylase. This enzyme must have biotin in order for it to function properly.
***********************************************
Biotin is a water-soluble vitamin that serves as an essential coenzyme for carboxylases catalyzing the transfer of a carboxyl (COOH) group to targeted substrates . The five biotin-dependent carboxylases are: pyruvate carboxylase (PC), propionly-CoA carboxylase (PCC), β-methylcrotonyl-CoA caboxylase (MCC), and acetyl-CoA carboxylase (ACC), with the latter enzyme existing in two distinct isoforms one of which is in the cytosol (ACC1) and the other is attached to the outer mitochondrial membrane (ACC2). PC, PCC and MCC are expressed in astrocytes and neurons and are involved in the production of oxaloacetate, succinyl- CoA and acetyl CoA CoA that are key intermediates for the tricarboxylic acid (Krebs) cycle which plays a central role in neuronal energy production . Activation of the Krebs cycle by very high doses of biotin may therefore increase the energy production in axons, thus avoiding the “virtual hypoxia phenomenon”. On the other hand, ACC1 (and ACC2) is involved in the synthesis of malonyl CoA from acetyl CoA and citrate. The synthesis of Malonyl CoA represents the rate-limiting and committed step of long-chain fatty acid biosynthesis. In the nervous system, ACC immunoreactivity is high in oligodendrocytes , and its activity is detected in purified myelin, suggesting that ACC (either ACC1 or ACC2) might be a key regulator for myelin synthesis. Furthermore, studies in cell cultures have shown that lactate, the main energetic substrate in the central nervous system, is oxidized in the Krebs cycle to produce ATP in neurons, whereas oligodendrocytes use lactate in part to produce membrane lipids presumably for myelin . Overall, high doses of biotin, could target the main metabolic processes related to progressive MS by:

(1) activating the Krebs cycle in demyelinated axons to increase energy production;

(2) activating the Krebs cycle in oligodendrocytes to increase the production of citrate required for lipids synthesis and; 

(3) activating ACC1 and ACC2, the rate-limiting enzymes in the synthesis of long chain fatty acids required for myelin synthesis

So why MS, it happened that someone is a study for something else who appeared to respond to high dose biotin had secondary progressive MS, they did a study in a few more MSers and they got better. However they could have "regressed to the mean" The went down in dose in a couple of people to 100mg and it didn't seem to work and up to 600mg and it was no better to plucked 300mg/day as the dose at 100mg/three times a day.

Let's hope this is all good luck as it clearly was not planned or understood.

The clinical trials only look at one dose...the regulators will not like this. 

However, I wonder if we are under starters orders for 30 10mg tablets a day (£2.50/day). My advice is to wait and see how the results of the trials play out and get the real drug and don't scoff the nutriceuticals.

The placebo vs Drug is a 9-12 months study, the placebo switched to active drug after year one of a two year study...Which is remarkably short.....and I suspect too short for the regulators. In the CUPID trial there was little change in 3years in the placebo arm.

A DMT study has to be 2 years they were talking 3 at one point so are we looking at a symptom control effect, like Fampridine which helps people walk quicker or something that really affects progression? Alternatively is this a repair agent because the endpoint is looking for improvement.

NCT02220933 (n=150) The purpose of this study is to demonstrate the superiority of MD1003 over placebo in the disability of patients suffering from progressive multiple sclerosis and especially those with gait impairment.

The placebo vs Drug is a 6 month study

NCT02220244 (n=105) The purpose of this study is to demonstrate the superiority of MD1003 over placebo in the visual improvement of patients suffering from chronic visual loss resulting from multiple sclerosis related optic neuritis.

PLEASE REMEMBER The trial may also be a DODO and fail Miserably. So don't get your hopes up. Also we don't know what the side effects are in an earlier study some people had the runs and they lost a few people in the trial was that chance or drug related?

Let's wait and see what the results have to say.

Labels: